organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Jia-Hui Chen, Yue-Qing Pu and Jin-Tang Wang

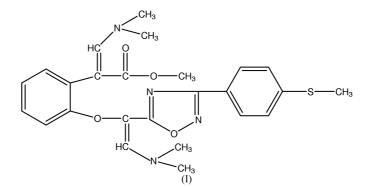
Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

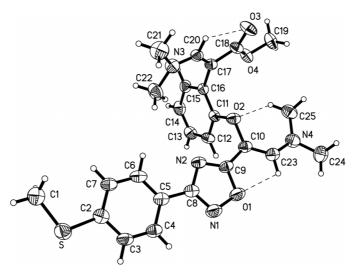
Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.058 wR factor = 0.211 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Methyl 3-(dimethylamino)-2-[2-(1-{3-[4-(methyl-sulfanyl)phenyl]-1,2,4-oxadiazol-5-yl}-2-(dimethyl-amino)vinyloxy)phenyl]acrylate


In the title compound, $C_{25}H_{28}N_4O_4S$, which is a derivative of 1,2,4-oxadiazole, there are intramolecular $C-H\cdots O$ and intermolecular $C-H\cdots \pi$ interactions.

Received 19 November 2004 Accepted 2 December 2004 Online 11 December 2004

Comment

1,2,4-Oxadiazoles represent an important class of fivemembered heterocycles. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), anti-inflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties and are efficient as agonists [*e.g.* forangiotensin (Naka & Kubo, 1999) and adhesion agents (Juraszyk *et al.*, 1997)] for different receptors. We report here the crystal structure of the title compound, (I).

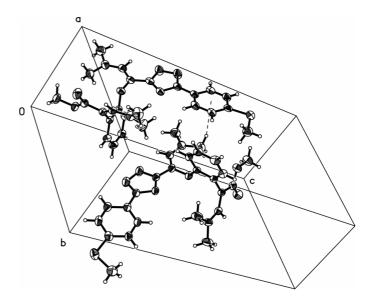
Figure 1

(c) 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate C-H···O hydrogen bonds. The molecular structure of (I) is shown in Fig. 1, where the dashed lines indicate $C-H\cdots O$ hydrogen bonds (Table 2). There are also intermolecular $C-H\cdots \pi$ interactions (Fig. 2), Cg2 in Table 2 being the centroid of atoms C2–C7. The combination of $C-H\cdots O$ and $C-H\cdots \pi$ weak interactions generates a three-dimensional network.

Experimental

Methyl 2-({3-[4-(methylthio)phenyl]-1,2,4-oxadiazol-5-yl}methoxy)phenylacetate (14 mmol) was dissolved in DMF (20 ml) and *N*,*N*dimethylformamide dimethyl acetal (8 ml) was added in one portion. The resulting mixture was refluxed for 6 h and then concentrated under reduced pressure to afford crude compound (I) (yield 65%). Pure compound (I) was obtained by crystallizing from a mixture of ethyl acetate (15 ml) and petroleum ether (7.5 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃, p.p.m.): 7.87–7.88 (*m*, 2H), 7.69 (*m*, 1H), 7.31 (*m*, 1H), 7.25–7.27 (*m*, 2H), 7.16–7.18 (*m*, 2H), 6.93–6.94 (*m*, 1H), 6.86–6.88 (*m*, 1H), 3.55 (*s*, 3H), 3.00 (*s*, 6H), 2.84–2.86 (*m*, 6H), 2.50 (*s*, 3H).

Crystal data


$C_{25}H_{28}N_4O_4S$ $M_r = 480.57$ Monoclinic, P_{21}/n a = 8.2940 (17) Å b = 12.654 (3) Å c = 23.601 (5) Å $\beta = 97.02$ (3)° V = 2458.4 (9) Å ³ Z = 4 Data collection	$D_x = 1.298 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.4 \times 0.3 \times 0.3 \text{ mm}$
Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scan Absorption correction: none 5129 measured reflections 4785 independent reflections 2345 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ <i>Refinement</i>	$\theta_{\text{max}} = 26.0^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 15$ $l = -28 \rightarrow 28$ 3 standard reflections every 200 reflections intensity decay: none
Refinement on F^2	$w = 1/[\sigma^2(E^2) + (0.1P)^2]$

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.058$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.211$	$(\Delta/\sigma)_{\rm max} = 0.009$
S = 1.10	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
4785 reflections	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$
308 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.0048 (13)

Table 1		
Selected geometric parameters	(Å,	°).

- . .

S-C2	1.758 (4)	N1-C8	1.298 (5)
S-C1	1.781 (5)	N2-C9	1.297 (5)
O1-C9	1.344 (4)	N2-C8	1.390 (5)
O1-N1	1.419 (4)		
C9-O1-N1	106.4 (3)	N1-C8-N2	114.8 (4)
C8-N1-O1	103.1 (3)	N2-C9-O1	113.3 (4)
C9-N2-C8	102.4 (3)		
O1-N1-C8-N2	-1.4 (4)	C11-O2-C10-C9	-81.8 (4)
C4-C5-C8-N1	-11.6(5)	C11-C16-C17-C18	86.8 (4)

Figure 2 Crystal structure of (I). The dashed line indicates the $C-H\cdots\pi$ interaction.

Table 2

Undrogen bond	a como otraz	/ A 0	<u>۱</u>
Hydrogen-bond	geometry	IA.	1.

	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C20-H20A···O3	0.93	2.34	2.756 (5)	107
C23-H23A···O1	0.93	2.34	2.757 (3)	107
$C25-H25A\cdots O2$	0.96	2.20	2.959 (5)	135
$C25-H25B\cdots Cg2^{i}$	0.96	2.88	3.783 (1)	158

Symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$. Cg2 is the centroid of the ring C2-C7.

All H atoms were positioned geometrically at C–H distances of 0.93–0.96 Å and included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}$ or $1.5 U_{\rm eq}$ of the carrier atom.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). PCT Int. Appl. WO 9744333.

- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D.
- (1998). Eur. J. Med. Chem. 33, 715–724.
- Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 0260439.